sgn.subprocess
¶
Parallelize
¶
Bases: SignalEOS
A context manager for running SGN pipelines with elements that implement separate processes or threads.
This class manages the lifecycle of workers (processes or threads) in an SGN pipeline, handling worker creation, execution, and cleanup. It also supports shared memory objects that will be automatically cleaned up on exit through the to_shm() method (only applicable for process mode).
Key features include: - Automatic management of worker lifecycle (creation, starting, joining, cleanup) - Shared memory management for efficient data sharing (process mode only) - Signal handling coordination between main process/thread and workers - Resilience against KeyboardInterrupt (Ctrl+C) - workers catch and ignore these signals, allowing the main process to coordinate a clean shutdown - Orderly shutdown to ensure all resources are properly released - Support for both multiprocessing and threading concurrency models
IMPORTANT: When using process mode, code using Parallelize MUST be wrapped within an if name == "main": block. This is required because SGN uses Python's multiprocessing module with the 'spawn' start method, which requires that the main module be importable.
Example with default process mode
def main(): pipeline = Pipeline() with Parallelize(pipeline) as parallelize: subprocess.run()
if name == "main": main()
Example with thread mode
def main(): pipeline = Pipeline() with Parallelize(pipeline, use_threading=True) as parallelize: subprocess.run()
if name == "main": main()
Source code in sgn/subprocess.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
__init__(pipeline=None, use_threading=None)
¶
Initialize the Parallelize context manager.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pipeline
|
The pipeline to run |
None
|
|
use_threading
|
Optional[bool]
|
Whether to use threading instead of multiprocessing. If not specified, uses the use_threading_default |
None
|
Source code in sgn/subprocess.py
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
|
run()
¶
Run the pipeline managed by this Parallelize instance.
This method executes the associated pipeline and ensures proper cleanup of worker resources, even in the case of exceptions. It signals all workers to stop when the pipeline execution completes or if an exception occurs.
Raises:
Type | Description |
---|---|
RuntimeError
|
If an exception occurs during pipeline execution |
AssertionError
|
If no pipeline was provided to the SubProcess |
Source code in sgn/subprocess.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
|
to_shm(name, bytez, **kwargs)
staticmethod
¶
Create a shared memory object that can be accessed by subprocesses.
Note: This is only applicable in process mode. In thread mode, shared memory is not necessary since threads share the same address space.
This method creates a shared memory segment that will be automatically cleaned up when the Parallelize context manager exits. The shared memory can be used to efficiently share large data between processes without serialization overhead.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
name
|
str
|
Unique identifier for the shared memory block |
required |
bytez
|
bytes or bytearray
|
Data to store in shared memory |
required |
**kwargs
|
Additional metadata to store with the shared memory reference |
{}
|
Returns:
Name | Type | Description |
---|---|---|
dict |
A dictionary containing the shared memory object and metadata with keys: - "name": The name of the shared memory block - "shm": The SharedMemory object - Any additional key-value pairs from kwargs |
Raises:
Type | Description |
---|---|
FileExistsError
|
If shared memory with the given name already exists |
Example
shared_data = bytearray("Hello world", "utf-8") shm_ref = SubProcess.to_shm("example_data", shared_data)
Source code in sgn/subprocess.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
|
ParallelizeSinkElement
dataclass
¶
Bases: SinkElement
, _ParallelizeBase
, Parallelize
A Sink element that runs data consumption logic in a separate process or thread.
This class extends the standard SinkElement to execute its processing in a separate worker (process or thread). It communicates with the main process/thread through input and output queues, and manages the worker lifecycle. Subclasses must implement the sub_process_internal method to define the consumption logic that runs in the worker.
The design intentionally avoids passing class or instance references to the worker to prevent pickling issues when using process mode. Instead, it passes all necessary data and resources via function arguments.
The implementation includes special handling for KeyboardInterrupt signals. When Ctrl+C is pressed in the terminal, workers will catch and ignore the KeyboardInterrupt, allowing them to continue processing while the main process coordinates a graceful shutdown. This prevents data loss and ensures all resources are properly cleaned up.
Attributes:
Name | Type | Description |
---|---|---|
worker_argdict |
dict
|
Custom arguments to pass to the worker |
queue_maxsize |
int
|
Maximum size of the communication queues |
err_maxsize |
int
|
Maximum size for error data |
_use_threading_override |
bool
|
Set to True to use threading or False to use multiprocessing. If not specified, uses the Parallelize.use_threading_default |
Example with default process mode
@dataclass class MyLoggingSinkElement(ParallelizeSinkElement): def post_init(self): super().post_init()
def pull(self, pad, frame):
if frame.EOS:
self.mark_eos(pad)
# Send the frame to the worker
self.in_queue.put((pad.name, frame))
@staticmethod
def sub_process_internal(**kwargs):
inq, worker_stop = kwargs["inq"], kwargs["worker_stop"]
try:
# Get data from the main process/thread
pad_name, frame = inq.get(timeout=1)
# Process or log the data
if not frame.EOS:
print(f"Sink received on {pad_name}: {frame.data}")
else:
print(f"Sink received EOS on {pad_name}")
except Empty:
pass
Example with thread mode
@dataclass class MyThreadedSinkElement(ParallelizeSinkElement): _use_threading_override = True
# Rest of implementation same as above
Source code in sgn/subprocess.py
596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 |
|
ParallelizeSourceElement
dataclass
¶
Bases: SourceElement
, _ParallelizeBase
, Parallelize
A Source element that generates data in a separate process or thread.
This class extends the standard SourceElement to execute its data generation logic in a separate worker (process or thread). It communicates with the main process through output queues, and manages the worker lifecycle. Subclasses must implement the sub_process_internal method to define the data generation logic that runs in the worker.
The design intentionally avoids passing class or instance references to the worker to prevent pickling issues when using process mode. Instead, it passes all necessary data and resources via function arguments.
The implementation includes special handling for KeyboardInterrupt signals. When Ctrl+C is pressed in the terminal, workers will catch and ignore the KeyboardInterrupt, allowing them to continue processing while the main process coordinates a graceful shutdown. This prevents data loss and ensures all resources are properly cleaned up.
Attributes:
Name | Type | Description |
---|---|---|
worker_argdict |
dict
|
Custom arguments to pass to the worker |
queue_maxsize |
int
|
Maximum size of the communication queues |
err_maxsize |
int
|
Maximum size for error data |
frame_factory |
Callable
|
Function to create Frame objects |
at_eos |
bool
|
Flag indicating if End-Of-Stream has been reached |
_use_threading_override |
bool
|
Set to True to use threading or False to use multiprocessing. If not specified, uses the Parallelize.use_threading_default |
Example with default process mode
@dataclass class MyDataSourceElement(ParallelizeSourceElement): def post_init(self): super().post_init() # Dictionary to track EOS status for each pad self.pad_eos = {pad.name: False for pad in self.source_pads}
def new(self, pad):
# Check if this pad has already reached EOS
if self.pad_eos[pad.name]:
return Frame(data=None, EOS=True)
try:
# Get data generated by the worker
# In a real implementation, you might use pad-specific queues
# or have the worker send pad-specific data
data = self.out_queue.get(timeout=1)
# Check for EOS signal (None typically indicates EOS)
if data is None:
self.pad_eos[pad.name] = True
# If all pads have reached EOS, set global EOS flag
if all(self.pad_eos.values()):
self.at_eos = True
return Frame(data=None, EOS=True)
# For data intended for other pads, you might implement
# custom routing logic here
return Frame(data=data)
except queue.Empty:
# Return an empty frame if no data is available
return Frame(data=None)
@staticmethod
def sub_process_internal(**kwargs):
outq, worker_stop = kwargs["outq"], kwargs["worker_stop"]
# Generate data and send it back to the main process/thread
for i in range(10):
if worker_stop.is_set():
break
outq.put(f"Generated data {i}")
time.sleep(0.5)
# Signal end of stream with None
outq.put(None)
# Wait for worker_stop before terminating
# This prevents "worker stopped before EOS" errors
while not worker_stop.is_set():
time.sleep(0.1)
Example with thread mode
@dataclass class MyThreadedSourceElement(ParallelizeSourceElement): _use_threading_override = True
def __post_init__(self):
super().__post_init__()
# Dictionary to track EOS status for each pad
self.pad_eos = {pad.name: False for pad in self.source_pads}
def new(self, pad):
# Similar implementation as in the process mode example,
# but might use threading-specific features if needed
if self.pad_eos[pad.name]:
return Frame(data=None, EOS=True)
# Rest of implementation same as the process mode example
Source code in sgn/subprocess.py
669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
|
ParallelizeTransformElement
dataclass
¶
Bases: TransformElement
, _ParallelizeBase
, Parallelize
A Transform element that runs processing logic in a separate process or thread.
This class extends the standard TransformElement to execute its processing in a separate worker (process or thread). It communicates with the main process/thread through input and output queues, and manages the worker lifecycle. Subclasses must implement the sub_process_internal method to define the processing logic that runs in the worker.
The design intentionally avoids passing class or instance references to the worker to prevent pickling issues when using process mode. Instead, it passes all necessary data and resources via function arguments.
The implementation includes special handling for KeyboardInterrupt signals. When Ctrl+C is pressed in the terminal, workers will catch and ignore the KeyboardInterrupt, allowing them to continue processing while the main process coordinates a graceful shutdown. This prevents data loss and ensures all resources are properly cleaned up.
Attributes:
Name | Type | Description |
---|---|---|
worker_argdict |
dict
|
Custom arguments to pass to the worker |
queue_maxsize |
int
|
Maximum size of the communication queues |
err_maxsize |
int
|
Maximum size for error data |
at_eos |
bool
|
Flag indicating if End-Of-Stream has been reached |
_use_threading_override |
bool
|
Set to True to use threading or False to use multiprocessing. If not specified, uses the Parallelize.use_threading_default |
Example with default process mode
@dataclass class MyProcessingElement(ParallelizeTransformElement): def post_init(self): super().post_init()
def pull(self, pad, frame):
# Send the frame to the worker
self.in_queue.put(frame)
@staticmethod
def sub_process_internal(**kwargs):
# Process data in the worker
inq, outq = kwargs["inq"], kwargs["outq"]
frame = inq.get(timeout=1)
# Process frame data
outq.put(processed_frame)
def new(self, pad):
# Get processed data from the worker
return self.out_queue.get()
Example with thread mode
@dataclass class MyThreadedElement(ParallelizeTransformElement): _use_threading_override = True
# Rest of implementation same as above
Source code in sgn/subprocess.py
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
|